[(boron or boric or boronic or borate) and inflammation] ________________________________________________________________ Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. Barrón-González M, Montes-Aparicio AV, Cuevas-Galindo ME, Orozco-Suárez S, Barrientos R, Alatorre A, Querejeta E, Trujillo-Ferrara JG, Farfán-García ED, Soriano-Ursúa MA J Inorg Biochem. 2023 Jan;238:112027 Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases. ________________________________________________________________ The effects of boron-supplemented diets on adipogenesis-related gene expressions, anti-inflammatory, and antioxidative response in high-fat fed rats. Kucukkurt I, Ince S, Eryavuz A, Demirel HH, Arslan-Acaroz D, Zemheri-Navruz F, Durmus I J Biochem Mol Toxicol. 2022 Nov 23:e23257 The fatty liver syndrome caused by nutritional factors is a common cause of hepatic dysfunction globally. This research was designed to study the shielding effect of boron in rats fed a diet having high fat. Overall, 40 Wistar albino male rats were placed into one control and four treatment groups, that is, each having eight rats. Group I was provided with a standard rat diet while group II was only provided a high-fat diet for 60 days. Groups III, IV, and V were provided with 5, 10, and 20 mg/kg/day boron, respectively, by gastric gavage besides a high-fat diet for 60 days. Malondialdehyde was increased significantly in rats' blood and tissue because of high-fat diets. Glutathione was decreased significantly in blood and tissues because of a high-fat diet. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased in the blood and tissues of the high-fat-fed rats. The genes expression for C-reactive protein, interleukin-1β, leptin, and tumor necrosis factor-α were increased while gene expression for peroxisome proliferator-activated receptors was decreased in the liver of rats fed with a high-fat diet. Contrariwise, boron supplementation improves antioxidative response in terms of increased SOD and CAT activities, gene expression regulation, and improved anti-inflammatory activities. In a nutshell, boron has dose-dependent shielding antioxidative and tissue regenerative effects in rats. ________________________________________________________________ Therapeutic Effects of Boric Acid in a Septic Arthritis Model Induced by Escherichia coli in Rats. Yıldız K, Makav M, Adalı Y, Bulut M Biol Trace Elem Res. 2022 Nov;200(11):4762-4770 Erratum in Biol Trace Elem Res. 2022 Feb 7 The study aimed to evaluate the therapeutic effect of boric acid (BA) in experimentally induced septic arthritis. A total of 30 rats, 6 rats in each group (5 groups), were used in the study. No treatment was applied to the rats in the control group. Only BA was administered intraperitoneally (IP) to the rats in the bor group. Escherichia coli was administered at a single dose of 25 μL, 1 × 1010 cfu/rat from the right foot pad of the rats, via intra-articular route, to the mice in the arthritis, arthritis-bor, and arthritis-antb groups. Then, BA at a dose of 50 mg/kg and cefazolin at a dose of 25 mg/kg were administered to the rats in the arthritis-bor and arthritis-antb groups, respectively, for 7 days via the IP route. At the end of the study, all animals were euthanized following the ethical rules. Blood and tissue samples were taken from the rats for biochemical and histopathological analyses. The levels of GSH, MDA, Endoglin, Endocan, and TNF-β markers were measured in the blood samples taken. A significant decrease was observed in MDA and Endoglin levels in the boric acid-administered group compared with the arthritis group, while a significant increase was observed at the GSH level. Histopathologically, it was determined that the reactive surrounding tissue response in the bor group was significantly reduced. As a result, a significant decrease in inflammation was found biochemically and histopathologically in the groups treated with BA. ________________________________________________________________ Boric Acid Reverses Nicotine-Induced Cytokine Expressions of Human Gingival Fibroblasts. Bozkurt SB, Nielsen FH, Hakki SS Biol Trace Elem Res. 2022 Apr 20 Nicotine, the major bioactive ingredient in tobacco, is a major risk factor for periodontal disease and destruction. Nicotine has been shown to stimulate the production of cytokines that are priming agents for inflammation that induces tissue destruction, such as IL-1β, IL-6, and IL-8, by gingival keratinocytes and human gingival fibroblasts (HGF). Boron as boric acid has been found to decrease pro-inflammatory cytokines and increase anti-inflammatory cytokines in cells with inflammatory stress. Thus, a study was performed to determine whether boric acid reverses negative effects of nicotine on human gingival fibroblasts (HGFs). The viability and cytokine expressions of HGFs cultured for 24 and 72 h in control medium with no nicotine or boric acid added and in media containing only nicotine, only boric acid, or a combination of BA and nicotine were determined. Nicotine in concentrations of 10-1, 10-2, 10-3,10-4, 10-5, and 10-6 mM significantly reduced cell viability compared to the control. Boric acid at 10 and 50 ng/mL in the media partially restored and 100 ng/mL in the media fully restored the nicotine-depressed HGF cell viability to the same level as the control group. Nicotine elevated the expression of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-17 and decreased the anti-inflammatory IL-10 in HGFs at 24 and 72 h. Boric acid at 100 ng/mL in the medium prevented the changes induced by nicotine alone. The findings indicate that boric acid can inhibit or reverse nicotine-induced pathology in periodontal tissue and thus may help maintain oral and periodontal health in tobacco users. ________________________________________________________________ Possible Curative Effects of Boric Acid and Bacillus clausii Treatments on TNBS-Induced Ulcerative Colitis in Rats. Özkoç M, Can B, Şentürk H, Burukoğlu Dönmez D, Kanbak G Biol Trace Elem Res. 2022 Mar 29 Crohn's disease (CD) and ulcerative colitis (UC) are two chronic relapsing inflammatory bowel diseases (IBD). Although there are several treatment options available to improve the symptoms of IBD patients, there is no effective treatment that provides a definitive solution. In the present study, we aim to investigate the antioxidative/anti-inflammatory effects of oral administration of boric acid and Bacillus clausii in a rat trinitrobenzenesulfonic acid (TNBS)-induced colitis model. The effects of boric acid and B. clausii were examined in serum and colon tissues with the help of some biochemical and histological analyses. Elevated inflammation and oxidative damage were found in the blood and colon tissue samples in the TNBS-induced group according to the complete blood count (CBC), tumor necrosis factor (TNF) alpha, interleukin-35 (IL-35), malondialdehyde (MDA), glutathione peroxidase (GPx), myeloperoxidase (MPO), nitric oxide (NO), and histological findings. Particularly, the highest IL-35 level (70.09 ± 12.62 ng/mL) in the combined treatment group, highest catalase activity (5322 ± 668.1 U/mg protein) in the TNBS-induced group, and lower relative expression of inducible nitric oxide synthase in the TNBS-induced group than the control group were striking findings. According to our results, it can be concluded that boric acid showed more curative effects, even if B. clausii probiotics was partially ameliorative. ________________________________________________________________ Boron Intake and decreased risk of mortality in kidney transplant recipients. Kremer D, Post A, Seidel U, Huebbe P, van der Veen Y, Groothof D, Gomes-Neto AW, Knobbe TJ, Lüersen K, Eisenga MF, Navis GJ, Rimbach G, Bakker SJL; TransplantLines Investigators. Collaborators: Kremer D, Knobbe TJ, Annema-de Jong JH, Berger SP, Blokzijl J, Bodewes FAJA, de Boer MT, Damman K, De Borst MH, Diepstra A, Dijkstra G, Douwes RM, Eisenga MF, Erasmus ME, Gan CT, Gomes Neto AW, Grootjans H, Hak E, Heiner-Fokkema MR, Hepkema BG, Klont F, Leuvenink HGD, Lexmond WS, de Meijer VE, Niesters HGM, van Pelt LJ, Pol RA, Porte RJ, Ranchor AV, Sanders JSF, Schutten JC, Siebelink MJ, Slart RHJA, Swarte JC, Timens W, Touw DJ, van den Heuvel MC, van Leer-Buter C, van Londen M, Verschuuren EAM, Vos MJ, Weersma RK, Bakker SJL. Eur J Nutr. 2022 Mar;61(2):973-984 PURPOSE: In a search for potentially modifiable factors to improve long-term outcome among kidney transplant recipients (KTR), we hypothesized that boron exposure is associated with improved long-term outcome in KTR. METHODS: We determined 24 h urinary boron excretion using inductively coupled plasma mass spectrometry as a measure of boron exposure in 693 stable KTR (57% male, mean age 53y), enrolled in the TransplantLines Food and Nutrition Biobank and Cohort Study. Dietary intake was assessed using validated food-frequency questionnaires. RESULTS: Linear regression analyses showed that dietary intake of fruit, wine and nuts were key determinants of boron excretion. In addition, boron excretion was negatively correlated with homocysteine and inflammatory parameters. In total, 73 (32%), 47 (20%) and 30 (13%) KTR died among the lowest, middle and highest tertiles of 24 h urinary boron excretion, respectively (Plog-rank < 0.001). Cox regression analyses showed that high boron excretion was strongly associated with lower risk of mortality, independent of age, sex, estimated glomerular filtration rate and history of cardiovascular disease (HR per doubling: 0.51, 95% CI: 0.40 to 0.66, P < 0.001). CONCLUSION: Boron may be an overlooked target to improve long-term survival among KTR and potentially other patients, likely through pathways other than inflammation or the methionine-homocysteine cycle that were previously suggested. Interventional trials are warranted to confirm the potential of dietary boron supplementation in KTR and other patient populations. ________________________________________________________________ Anti- inflammatory effect of boric acid on cytokines in ovariectomy-induced rats. Tekeli H, Ekren Asıcı GS, Bildik A Cell Mol Biol (Noisy-le-grand). 2022 Jan 2;67(4):313-320 The increase in the rate of inflammation in the post-menopause period also leads to a significant increase in the use of anti-inflammatory agents. This study aimed to investigate the effect of BA supplementation on pro-and anti-inflammatory cytokines in ovariectomy (OVX) induced rats. A total of 48 nonpregnant female Wistar albino rats (80-100 g) were used in the experiment. Forty-eight rats were divided into six equal groups (n=8): Control, OVX, OVX+5 mg/kg BA (OVX+BA5), OVX+10 mg/kg BA (OVX+BA10), 5 mg/kg BA (BA5), 10 mg/kg BA (BA10). Serum TNF-α cytokine levels of rats in the OVX group were higher than in control rats (P<0.05). TNF-α levels were significantly reduced in the OVX-induced rats with 5 mg/kg BA and 10 mg/kg BA supplementation (P<0.05). While serum IL-1α and IL-6 levels were not different between OVX and control rats, serum IL-3 levels were low (P<0.05) and not affected by 5 mg/kg and 10 mg/kg BA supplementation. Serum IL-11 levels increased significantly in the OVX rats with 5 mg/kg and 10 mg/kg BA supplementation (P<0.05). As far as we know, certain doses (5 and 10 mg/kg) of BA are the first study on the prevention of increased inflammation in rats induced by OVX. Results suggest that the supplementation of BA regulates the inflammatory changes associated with OVX and thus has beneficial for menopause management. ________________________________________________________________ Borate Ameliorates Sodium Nitrite-Induced Oxidative Stress Through Regulation of Oxidant/Antioxidant Status: Involvement of the Nrf2/HO-1 and NF-κB Pathways. Soliman MM, Aldhahrani A, Elshazly SA, Shukry M, Abouzed TK Biol Trace Elem Res. 2022 Jan;200(1):197-205 The widespread industrial use of nitrite in preservatives, colorants, and manufacturing rubber products and dyes increases the possibilities of organ toxicity. Lithium borate (LB) is known as an antioxidant and an oxidative stress reliever. Therefore, this study is aimed at examining the effect of LB on nitrite-induced hepatorenal dysfunction. Twenty-eight male Swiss mice were divided into four equal groups. Group 1, the control group, received saline. Group 2 received LB orally for 5 consecutive days at a dose of 15 mg/kg bw. Group 3, the nitrite group, received sodium nitrite (NaNO2) on Day 5 (60 mg/kg bw intraperitoneally). Group 4, the protective group (LB + NaNO2 group), received LB for 5 days and then a single dose of NaNO2 intraperitoneally on Day 5, the same as in Groups 2 and 3, respectively. Samples of blood and kidney were taken for serum analysis of hepatorenal biomarkers, levels of antioxidants and cytokines, and the expression of genes associated with oxidative stress and inflammation. NaNO2 intoxication increased markers of liver and kidney functions yet decreased reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activities in blood. NaNO2 also increased the expression of tumor necrosis factor (TNF-α), interleukin-1β and interleukin-6 (IL-1β and IL-6). Pre-administration of LB protected mice from oxidative stress, lipid peroxidation, and the decrease in antioxidant enzyme activity. Moreover, LB protected mice from cytokine changes, which remained within normal levels. LB ameliorated the changes induced by NaNO2 on the mRNA of nuclear factor erythroid 2-related factor 2 (Nfr2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), transforming growth factor-beta 2 (TGF-β2), and glutathione-S-transferase (GST) as determined using quantitative real-time PCR (qRT-PCR). These results collectively demonstrate that LB ameliorated NaNO2-induced oxidative stress by controlling the oxidative stress biomarkers and the oxidant/antioxidant state through the involvement of the Nrf2/HO-1 and NF-κB signaling pathways. ________________________________________________________________ The Impact of Trace Elements on Osteoarthritis. Li G, Cheng T, Yu X Front Med (Lausanne). 2021 Dec 23;8:771297 Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation, synovial inflammation, subchondral sclerosis and osteophyte formation. It has a multifactorial etiology with potential contributions from heredity, endocrine function, abnormal mechanical load and nutrition. Of particular considerations are trace element status. Several trace elements, such as boron and magnesium are essential for normal development of the bone and joint in human. While cadmium correlates with the severity of OA. The present review focuses on the roles of trace elements (boron, cadmium, copper, iron, magnesium, manganese, selenium, zinc) in OA and explores the mechanisms by which they act. ________________________________________________________________ Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, Starešinić M, Sabalić S, Dobričić B, Petrović T, Antičević D, Borić I, Košir R, Zmrzljak UP, Primorac D Int J Mol Sci. 2021 Aug 26;22(17):9208 Osteoarthritis is a common cause of disability worldwide. Although commonly referred to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis of this degenerative process is not completely understood; however, a low-grade inflammation leading to an imbalance between anabolic and katabolic processes is a well-established factor. The complex network of cytokines regulating these processes and cell communication has a central role in the development and progression of osteoarthritis. Concentrations of both proinflammatory and anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and activity. In this review, we analyzed individual cytokines involved in the immune processes with an emphasis on their function in osteoarthritis. ________________________________________________________________ Calcium Fructoborate Prevents Skin Cancer Development in Balb-c Mice: Next Part, Reverse Inflammation, and Metabolic Alteration. Kisacam MA, Kocamuftuoglu GO, Ozan IE, Yaman M, Ozan S Biol Trace Elem Res. 2021 Jul;199(7):2627-2634 Metabolic alterations and inflammation are regarded as hallmarks of cancer. Glycolytic flux and intermediate accumulation lead to the production of building blocks and NADPH which is important in protecting the cell from oxidative damage. Inflammation causes the release of mediators responsible for regulating molecular mechanism affecting metabolic pathways. CaFB due to its cis-diol-rich feature may have the potential to interact with molecules taking part in cancer development. This study was aimed to investigate the effects of CaFB on metabolic alterations and inflammation in 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin cancer. For this purpose, 92 Balb-c mice were distributed into 6 groups as control, CaFB, DMBA/TPA (D-T), treatment 1 (T1), 2 (T2), and 3(T3). Apart from control and CaFB in other groups, tumors initiated with 97.5-nmol DMBA and 6.5-nmol TPA. Treatment groups received 3 mg/kg/day CaFB with DMBA (T1), with TPA (T2), and after tumor formation (T3). In the D-T group, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, 6-phosphogluconate dehydrogenase (PGD), glutathione (GSH), interleukin 6 (IL-6), (IL-1β), tumor necrosis factor-α (TNF-α) levels increased (p < 0.001) while malondialdehyde (MDA) levels decreased (p < 0.001) compared with that in control. CaFB application ameliorated DMBA-TPA effect according to the distribution time. It is noteworthy to consider CaFB as a potential preventive agent in skin cancer development. ________________________________________________________________ Preclinical and histological study of boron-containing compounds hydrogels on experimental model of periodontal disease. Mitruţ I, Cojocaru MO, Scorei IR, Biţă A, Mogoşanu GD, Popescu M, Olimid DA, Manolea HO. Rom J Morphol Embryol. 2021 Jan-Mar;62(1):219-226 Periodontitis is a disease that affects a wide group of people, and there has been an increased interest in the research of finding useful materials that help reduce inflammation and the further loss of tissue. In this study, we have tested a boron-containing compound (BCC) Calcium Fructoborate (CaFB) and Boric Acid (BA) hydrogels on the gingival level on Wistar rats. First, we have induced the periodontal disease at the lower incisors, we have applied the hydrogels and after a week, we have euthanized the rats. Next, the oral soft tissue reaction was clinically and then histologically investigated. Our study has shown good clinical response of the oral tissue, and we have noticed lower levels of inflammation on the experimental groups treated with the BCCs hydrogels. Despite the generally good response of the biological structures to the presence of BA and CaFB on periodontal level, more scientifically proved information is needed to obtain the desired biological responses in all clinical situations. ________________________________________________________________ Boric acid inhibits alveolar bone loss in rat experimental periodontitis through diminished bone resorption and enhanced osteoblast formation. Shalehin N, Hosoya A, Takebe H, Hasan MR, Irie K J Dent Sci. 2020 Dec;15(4):437-444 BACKGROUND/PURPOSE: Inhibition of bone resorption is essential for periodontal treatment. Recently, it has been suggested that boric acid suppresses periodontitis, but the mechanism of this inhibition is still not well understood. Therefore, to analyze the cellular response to boric acid administration, we histologically evaluated alveolar bone in experimental periodontitis of rats administered boric acid. MATERIALS AND METHODS: 5-0 silk ligatures were placed around the cervix of the second maxillary molars of 4 week-old rats treated with or without boric acid. Five and 14 days after ligature placement, the periodontal tissues between first and second molars were investigated histologically and immunohistochemically using antibodies to CD68, cathepsin K, and α-smooth muscle actin (SMA). RESULTS: Five days after the beginning of the experiment, many CD68-positive cells appeared in the periodontal tissues with ligature placement without boric acid administration. Also, the number of cathepsin K-positive osteoclasts had increased on the surface of alveolar bone. However, boric acid administration prevented severe bone resorption and reduced the number of cells positive for CD68 and cathepsin K. At day 14 post treatment, cells positive for α-SMA were seen in the periodontal tissues after boric acid administration, whereas no such cells were found around the alveolar bone without the administration of boric acid. CONCLUSION: Boric acid inhibited the inflammation of ligature-induced periodontitis. This agent might reduce bone resorption by inhibiting osteoclastogenesis and also could accelerate osteoblastogenesis. ________________________________________________________________ Evaluation of oxidative stress and immune parameters of boron exposed males and females. Başaran N, Duydu Y, Bacanlı M, Gül Anlar H, Dİlsİz SA, Üstündağ A, Yalçın CÖ, Schwerdtle T, Bolt HM Food Chem Toxicol. 2020 Aug;142:111488 There is growing evidence that boron (B) and B compounds are essential nutrients for animals and humans. Besides, B compounds have been suggested to treat inflammation and oxidative stress. As a part of our "Boron Project II" on B-exposed persons in Bandırma and Bigadic (Turkey) between 2014 and 2017, anti-oxidant/pro-oxidant and inflammatory parameters were assessed. In this first large-scale human study biomarkers of oxidative stress such as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and the levels of malondialdehyde (MDA), glutathione (GSH) and 8-hydroxy-2'-deoxy-guanosine (8-OH-dG) were investigated, in relation to B exposure. The immune biomarkers interleukin (IL)-1ra, IL-6, IL-8 and nuclear factor kappa B (NF-κB) levels were included. There was no influence of human exposure to B on the parameters of oxidative stress and inflammation. ________________________________________________________________ The Role of Oxidative Stress, Renal Inflammation, and Apoptosis in Post Ischemic Reperfusion Injury of Kidney Tissue: the Protective Effect of Dose-Dependent Boric Acid Administration. Kar F, Hacioglu C, Senturk H, Donmez DB, Kanbak G Biol Trace Elem Res. 2020 May;195(1):150-158 Ischemia/reperfusion (I/R) injury is associated with a strong inflammatory and oxidative stress response to hypoxia and reperfusion that impair organ function. We aimed to investigate the role of oxidative stress, renal inflammation, and apoptosis in the injury of the kidney tissue after ischemic reperfusion, and the protective effect of dose-dependent boric acid administration. For this purpose, 35 Sprague Dawley albino rats were divided into five groups of seven animals in each group: Sham, I/R and I/R + boric acid (BA) (i.p at doses of 50, 100, and 200 mg/kg). All animals underwent nephrectomy (the right kidney was removed) and were expected to recover for 15 days. After recovery, each animal received 45 min of ischemia. BA was injected intraperitoneally 10 min before reperfusion and a 24-h reperfusion procedure was performed. Sham group only underwent surgical stress procedure. In order to investigate the oxidative stress induced by I/R injury and antioxidant effects of different BA doses in the kidney tissue, TAS, TOS, MDA, SOD, CAT, and GSH levels were measured. DNA fragmentation, cytochrome C levels, caspase 3 activity were measured to determine apoptotic index in tissue. IL-6 and TNF-α levels were measured in the evaluation of inflammation. Hematoxylin-eosin and TUNEL staining was performed for histopathological examinations. As a result, increased oxidative stress, inflammation, and apoptosis after I/R were decreased with different doses of BA treatment. The application of high-dose BA was found to be lower in anti-apoptotic, anti-inflammatory, and antioxidant effects than in the low-dose groups. ________________________________________________________________ Propolis and Its Combination with Boric Acid Protect Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Oxidative Stress, Inflammation, DNA Damage, and Apoptosis in Rats. Geyikoglu F, Koc K, Colak S, Erol HS, Cerig S, Yardimci BK, Cakmak O, Dortbudak MB, Eser G, Aysin F, Ozek NS, Yildirim S Biol Trace Elem Res. 2019 Dec;192(2):214-221 Ischemia reperfusion (I/R) injury which causes kidney dysfunction is one of the most studied diseases directly linked to oxidative stress. In this regard, it is important to protect cells against damage by inducing antioxidant response. Herein, we aimed to evaluate the therapeutic roles and possible mechanisms of propolis and boric acid in kidney I/R injury based on relevant basic research and clinical studies. Sprague-Dawley rats were subjected to 50 min of ischemia followed by 3 h of reperfusion. Animals were randomly divided into a control group (the abdominal wall was just opened and closed), an I/R injury group, the propolis intervention group (200 mg/kg, intragastric administration, 1 h before ischemia), boric acid intervention group (14 mg/kg, intragastric administration 1 h before ischemia), and the propolis + boric acid intervention group (intragastric administration 1 h before ischemia). Kidney function, the antioxidant defensive system, and renal damage were assessed. In addition, the oxidative stress and inflammatory status were estimated in renal tissue. Furthermore, DNA damageand apoptosis were detected by immunohistochemistry. When compared with I/R group, propolis alone and especially propolis + boric acid groups significantly improved functional parameters. While the antioxidant response was increased, renal injury size and apoptosis were significantly decreased in both groups. Also, the MDA and TNF-α levels besides the 8-OHdG formation were downregulated. According to these outcomes, it can be said that especially propolis together with boric acid ameliorates kidney injury caused by I/R through acting as an antioxidant, anti-inflammatory, and antiapoptotic agent. In conclusion, propolis alone and its combination with boric acid could be developed as therapeutic agents against serious renal I/R injuries. ________________________________________________________________ The propolis and boric acid can be highly suitable, alone/or as a combinatory approach on ovary ischemia-reperfusion injury. Geyikoglu F, Koc K, Erol HS, Colak S, Ayer H, Jama S, Eser G, Dortbudak MB, Saglam YS Arch Gynecol Obstet. 2019 Nov;300(5):1405-1412 PURPOSE: Ovarian ischemia-reperfusion (IR) damage continues to be a serious infertility problem. The oxidative stress plays central role in the development of IR injuries. Activation of antioxidants decreases IR injuries; however, the efficacy of antioxidant agents remains controversial. Unfortunately, there has been no evidence for medicinal use of boric acid (BA) and propolis (Prop) on ovarian IR injury on rats so far. This study will provide to reveal the potential applications of the Prop and BA in ovarian IR therapy. METHODS: The Sprague-Dawley rats were randomized into five groups: I-control, II-IR, 3 h of ischemia and 3 h of reperfusion, III and IV-a signal dose of oral BA (7 mg/kg) and Prop (100 mg/kg) alone 1 h before induction of IR, V-Prop and BA together 1 h before induction of IR. SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), MPO (myeloperoxidase), MDA (malondialdehyde), and IL-6 (interleukin-6) levels were quantified by ELISA and the TNF-α (tumor necrosis factor-α), 8-OHdG (8-hydroxylo-2'-deoxyguanosin) and Caspase-3 expressions were performed by immunohistochemical analyses. RESULTS: BA and Prop pretreatment significantly reduced MPO, MDA, and IL-6 levels and pathologic score in IR rats, with no effects in control group. These agents used in therapy also decreased TNF-α, 8-OHdG and Caspase-3 protein expressions increased by IR. Furthermore, BA and Prop combination showed significant ameliorative effects on ovary injury caused by IR through acting as an antioxidant, anti-inflammatory and antiapoptotic agent. CONCLUSION: BA and Prop alone and especially in combination could be developed as therapeutic agents against ovary IR injury. ________________________________________________________________ Effects of boron-containing compounds on immune responses: review and patenting trends. Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA Expert Opin Ther Pat. 2019 May;29(5):339-351 INTRODUCTION: Boron-containing compounds induce effects on immune responses. Such effects are interesting to the biomedical field for the development of therapeutic tools to modulate the immune system. AREAS COVERED: The scope of BCC use to modify immune responses is expanding, mainly with regard to inflammatory diseases. The information was organized to demonstrate the breadth of reported effects. BCCs act as modulators of innate and adaptive immunity, with the former including regulation of cluster differentiation and cytokine production. In addition, BCCs exert effects on inflammation induced by infectious and noninfectious agents, and there are also reports regarding their effects on mechanisms involving hypersensitivity and transplants. Finally, the authors discuss the beneficial effects of BCCs on pathologies involving various targets and mechanisms. EXPERT OPINION: Some BCCs are currently used as drugs in humans. The mechanisms by which these BCCs modulate immune responses, as well as the required structure-activity relationship for each observed mechanism of action, should be clarified. The former will allow for the development of improved immunomodulatory drugs with extensive applications in medicine. Patenting trends involve claims concerning the synthesis and actions of identified molecules with a defined profile regarding cytokines, cell differentiation, proliferation, and antibody production. ________________________________________________________________ Boron ameliorates arsenic-induced DNA damage, proinflammatory cytokine gene expressions, oxidant/antioxidant status, and biochemical parameters in rats. Ince S, Kucukkurt I, Acaroz U, Arslan-Acaroz D, Varol N J Biochem Mol Toxicol. 2019 Feb;33(2):e22252 Arsenic, an element found in nature, causes hazardous effects on living organisms. Meanwhile, natural compounds exhibit protective effects against hazardous substances. This study evaluated the effects of boron against arsenic-induced genotoxicity and altered biochemical parameters in rats. Thirty-five male Wistar albino rats were equally divided into five groups, and the experimental period lasted 30 days. One group was used as the control, and another group was treated with 100 mg/L arsenic in drinking water. The other groups were orally treated with 5, 10, and 20 mg/kg boron plus arsenic (100 mg/L via drinking water). Arsenic caused changes in biochemical parameters, total oxidant/antioxidant status, and DNA damage in mononuclear leukocytes. Moreover, it increased IFN-γ, IL-1β, TNF-α, and NFκB mRNA expression levels in rat tissue. However, boron treatment improved arsenic-induced alterations in biochemical parameters and increases in DNA damage and proinflammatory cytokine gene expressions. ________________________________________________________________ Effects of boron-containing compounds on cardiovascular disease risk factors - a review. Donoiu I, Militaru C, Obleagă O, Hunter JM, Neamţu J, Biţă A, Scorei IR, Rogoveanu OC J Trace Elem Med Biol. 2018 Dec;50:47-56 Boron is considered to be a biological trace element but there is substantial and growing support for it to be classified as an essential nutrient for animals and humans, depending on its speciation. Boron-containing compounds have been reported to play an important role in biological systems. Although the exact biochemical functions of boron-containing compounds have not yet been fully elucidated, previous studies suggest an active involvement of these molecules in the mediation of inflammation and oxidative stress. Chronic inflammation and oxidative stress are known to amplify the effects of the main cardiovascular risk factors: smoking, diet, obesity, arterial hypertension, dyslipidemia, type 2 diabetes (as modifiable risk factors), and hyperhomocysteinemia and age (as independent risk factors). However, the role of boron-containing compounds in cardiovascular systems and disease prevention has yet to be established. This paper is a review of boron-containing compounds' existence in nature and their possible functions in living organisms, with a special focus on certain cardiovascular risk factors that may be diminished by intake of these compounds, leading to a reduction of cardiovascular morbidity and/or mortality. ________________________________________________________________ Profile of three boron-containing compounds on the body weight, metabolism and inflammatory markers of diabetic rats. López-Cabrera Y, Castillo-García EL, Altamirano-Espino JA, Pérez-Capistran T, Farfán-García ED, Trujillo-Ferrara JG, Soriano-Ursúa MA J Trace Elem Med Biol. 2018 Dec;50:424-429 It has been reported that boron induces changes in carbohydrate and lipid metabolism, body weight and inflammatory processes. This is relevant to the biomedical field due to the requirement for developing therapeutic tools with potential application in metabolic disorders affecting humankind. However, most of the reported data from both humans and animals were obtained after boron was administered as borax or boric acid. In this work, we determined the effects of boric, cyclohexylboronic (CHB) and phenylboronic (PBA) acids (10 mg/kg of body weight/daily for two weeks) on the body weight, metabolism and inflammatory markers in the blood of control, fat-feeding and experimental diabetic rats. In particular, we observed the effects of the administration of these compounds on glycaemia and cholesterol, triglyceride, insulin, IL-6 and C-reactive protein levels, as well as visceral fat and body weight. We found different profiles for each boron-containing compound: boric acid induced decreasing body weight, insulin and IL-6 levels; CHB administration induced an increase in body weight and cholesterol but decreased IL-6 levels; and PBA administration induced a decrease in visceral fat and glucose and insulin levels. These results can improve the understanding of boron as a metabolic regulator and help develop new potential strategies to use compounds with this trace element for therapeutic purposes. ________________________________________________________________ The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, Arslan HO, Varol N, Zhu K Food Chem Toxicol. 2018 Aug;118:745-752 Acrylamide (ACR) is a hazardous substance associated with the accumulation of excessive reactive oxygen species and causes oxidative stress. Presence of ACR in foods leads to public health concerns due to its known neurotoxic, genotoxic, and carcinogenic effects. The present study investigated the ameliorative effects of boron (B) against ACR exposed rats. Forty Wistar albino male rats, fed with low-boron diet, were randomly and equally allocated into 5 groups. The control group was orally treated with physiological saline as placebo, the second group was orally given 15 mg/kg ACR. The other groups were orally treated with 15 mg/kg ACR and B at the levels of 5, 10, and 20 mg/kg/day for 60 days, respectively. ACR-treatment significantly increased malondialdehyde levels whereas decreased glutathione levels in rat tissues. Also, ACR-treatment increased the activities of superoxide dismutase and catalase in erythrocytes and tissues. Meanwhile, mRNA expression levels of NFĸB, IFN-γ, IL-1β, and TNF-α in liver and brain of rats were increased under ACR treatment. Additionally, ACR caused a significant decrease in the level of high-density lipoprotein, with increase in the levels of low-density lipoprotein, triglyceride, cholesterol, glucose, urea nitrogen, and creatinine. Lastly, B alleviated histopathological alterations induced by ACR in rat tissues. ________________________________________________________________ Cytotoxic and inflammatory effects of contact lens solutions on human corneal epithelial cells in vitro. Oh S, McCanna DJ, Subbaraman LN, Jones LW Cont Lens Anterior Eye. 2018 Jun;41(3):282-289 PURPOSE: To ascertain the effect that four contact lens (CL) multipurpose solutions (MPS) have on the viability and release of pro-inflammatory cytokines from human corneal epithelial cells (HCEC). METHODS: HCEC were exposed to four different MPS at various concentrations for 18 hours. The cells were also exposed to phosphate buffer, borate buffer, and PHMB. The cell viability was evaluated using the alamarBlue assay. The release of pro-inflammatory cytokines was measured using a Multiplex electrochemiluminescent assay. RESULTS: MPS-A, MPS-B and MPS-C all reduced cell metabolic activity p < 0.05 from control with MPS-A showing the greatest cytotoxic effect (maximum reduction, 90.6%). In contrast, MPS-D showed no significant reductions in cytotoxicity except at the highest concentration tested (19% reduction at 20% MPS concentration). Of the four cytokines evaluated MPS-C showed a substantial increase in the release of IL-1β, IL-6, IL-8, and TNF-α at higher concentrations when compared to control p < 0.05. At the 20% concentration of MPS-A and MPS-B the release of IL-1 β increased p < 0.05 but the release of IL-6, IL-8, and TNF-α decreased. MPS-D did not cause a change in the release of cytokines IL-1β, IL-6, IL-8 and TNF-α p > 0.05. Exposing the cells to borate buffer and PHMB caused an increase in the release of TNF-α p < 0.05. CONCLUSIONS: This investigation demonstrates that at different concentration levels, several of the MPS tested showed a decrease in viability and an increase in the release of inflammatory cytokines from HCEC. The borate buffer component as well as PHMB appears to contribute to this pro-inflammatory reaction. ________________________________________________________________ Ototoxicity of boric acid powder in a rat animal model. Salihoglu M, Dogru S, Cesmeci E, Caliskan H, Kurt O, Kuçukodaci Z, Gungor A Braz J Otorhinolaryngol. 2018 May-Jun;84(3):332-337 INTRODUCTION: Boric acid, which has antiseptic and acidic properties, is used to treat external and middle ear infections. However, we have not found any literature about the effect of boric acid powder on middle ear mucosa and inner ear. OBJECTIVE: The purpose of this study is to investigate possible ototoxic effects of boric acid powder on cochlear outer hair cell function and histological changes in middle ear mucosa in a rat animal model. METHODS: Twenty healthy, mature Wistar albino rats were used in this study. The rats were divided into two groups, Group A and Group B, each of which consisted of 10 rats. Initially, the animals in each group underwent distortion product otoacoustic emissions testing of their right and left ears. After the first distortion product otoacoustic emissions test, a surgical microscope was used to make a small perforation in both ears of the rats in each group, and a second distortion product otoacoustic emissions test was used to measure both ears in all of the rats. Boric acid powder was applied to the right middle ear of the rats using tympanic membrane perforation, and the distortion product otoacoustic emissions were measured immediately after the boric acid powder application. The histological changes and distortion product otoacoustic emissions were evaluated three days later in Group A and 40 days later in Group B. RESULTS: No significant differences were found at all of the distortion product otoacoustic emissions frequencies. In Group A, mild inflammation of the middle ear mucosa was found on the third day after boric acid powder application. In Group B, boric acid powder caused mild inflammatory changes on the 40th day, which declined over time. Those changes did not lead to significant fibrosis within the mucosa. CONCLUSION: In rats, boric acid powder causes mild inflammation in middle ear mucosa and it has no ototoxic effects on cochlear outer hair cell function in the inner ear of rats. ________________________________________________________________ Boron-Based Inhibitors of the NLRP3 Inflammasome. Baldwin AG, Rivers-Auty J, Daniels MJD, White CS, Schwalbe CH, Schilling T, Hammadi H, Jaiyong P, Spencer NG, England H, Luheshi NM, Kadirvel M, Lawrence CB, Rothwell NJ, Harte MK, Bryce RA, Allan SM, Eder C, Freeman S, Brough D Cell Chem Biol. 2017 Nov 16;24(11):1321-1335.e5 NLRP3 is a receptor important for host responses to infection, yet is also known to contribute to devastating diseases such as Alzheimer's disease, diabetes, atherosclerosis, and others, making inhibitors for NLRP3 sought after. One of the inhibitors currently in use is 2-aminoethoxy diphenylborinate (2APB). Unfortunately, in addition to inhibiting NLRP3, 2APB also displays non-selective effects on cellular Ca2+ homeostasis. Here, we use 2APB as a chemical scaffold to build a series of inhibitors, the NBC series, which inhibit the NLRP3 inflammasome in vitro and in vivo without affecting Ca2+ homeostasis. The core chemical insight of this work is that the oxazaborine ring is a critical feature of the NBC series, and the main biological insight the use of NBC inhibitors led to was that NLRP3 inflammasome activation was independent of Ca2+. The NBC compounds represent useful tools to dissect NLRP3 function, and may lead to oxazaborine ring-containing therapeutics. ________________________________________________________________ Calcium Fructoborate for Bone and Cardiovascular Health. Mogoşanu GD, Biţă A, Bejenaru LE, Bejenaru C, Croitoru O, Rău G, Rogoveanu OC, Florescu DN, Neamţu J, Scorei ID, Scorei RI Biol Trace Elem Res. 2016 Aug;172(2):277-281 Calcium fructoborate (CF), a natural sugar-borate ester found in fresh fruits and vegetables, is a source of soluble boron. CF contains three forms of borate (diester, monoester, and boric acid) and all are biologically active, both at the intracellular (as free boric acid) and extracellular level (as fructose-borate diester and monoester). At the cellular and molecular level, CF is superior to the boric acid/borate, exhibiting a complex "protective" effect against inflammatory response. CF is commercially available in the USA as a "nature-identical" complex, an active compound for dietary supplements. It provides effective and safe support against the discomfort and lack of flexibility associated with osteoarticular conditions (arthritis and joint degeneration), and improves Western Ontario and McMaster Universities Osteoarthritis (WOMAC) and McGill indexes. In addition, orally administered CF is effective in ameliorating symptoms of physiological response to stress, including inflammation of the mucous membranes, discomfort associated with osteoarthritis disorders, and bone loss, and also for supporting cardiovascular health. Clinical studies have exhibited the ability of CF to significantly modulate molecular markers associated with inflammatory mechanisms, mainly on the elevated serum levels of C-reactive protein (CRP). ________________________________________________________________ Comparison of Boric Acid and Combination Drug of Polymyxin, Neomycin and Hydrocortisone (polymyxin NH) in the Treatment of Acute Otitis Externa. Amani S, Moeini M J Clin Diagn Res. 2016 Jul;10(7):MC01-4 INTRODUCTION: Acute otitis externa is an inflammation of the external auditory canal known as "swimmer's ear". Direct costs including medical treatment, painkillers, antibiotics, steroids or both and indirect costs are also remarkable. AIM: The aim of this study was to compare the effect of boric acid and polymyxin, neomycin and hydrocortisone composition in the treatment of acute otitis externa. MATERIALS AND METHODS: This randomized clinical trial was carried out on 80 patients aged more than 17-year-old who were referred to Kashani hospital clinic with a diagnosis of acute otitis externa by otolaryngologist. The patients were randomly allocated to two groups (A: Boric acid and B: polymyxin NH ear drops) and Painkiller was prescribed and administered orally for all patients and in the presence of fever, cellulitis around the ears and neck adenopathy, broad-spectrum systemic antibiotics were used besides topical treatment. Symptoms of patients who were evaluated by a physician includes pain, discharge from the ear, swelling of the ear canal, auricle swelling, tenderness, and ear itching. In addition, pain was evaluated in patients and was recorded by Macgill Pain Questionnaire, in the first, third, seventh and tenth days. RESULTS: Results showed that itching on third day (p=0.007) and swelling of the ear canal in the examination of the third day (p=0.006) and the seventh day (p=0.001) in the polymyxin NH group was more than those of boric acid group. Overall mean pain based on McGill questionnaire was 11.10±1.49 in boric acid group in the examination on the first day and was 4.05±0.22 in the examination on the tenth day and in the polymyxin NH group, it was 10.9±0.99 on the first day and 4.20±0.40 on the tenth day. In both groups, pain relief was the same and there was no significant difference between two groups (p=0.075). CONCLUSION: The findings of this study showed slight differences in the effectiveness of the boric acid drug and combination of polymyxin, neomycin and hydrocortisone in the treatment of patients with acute otitis externa that is of clinical significance. ________________________________________________________________ Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. [Comment: while boron compounds in many settings are anti-inflammatory, yet here they are immune stimulating.] Routray I, Ali S PLoS One. 2016 Mar 2;11(3):e0150607 Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases. ________________________________________________________________ Effect of absorbable gelatin sponge in the middle ear: in vitro and in vivo animal model. Goncalves S, Chiossone-Kerdel JA, Bianco AS, Ercolino JM, Hernandez-Rojas J. Acta Otolaryngol. 2015 Jan;135(1):14-25 CONCLUSION: GelitaSpon gelatin sponge (GS) showed faster reabsorption than gelfoam (GF) in vitro, and GS-packed middle ears resulted in a faster hearing recovery and less inflammation than the ears packed with GF soaked in saline. Soaking GF sponges with boric acid (BA) appeared to offset the inflammatory response of saline-soaked GF, making this inflammatory response comparable to that of GS-packed ears. OBJECTIVE: To describe the reabsorption and inflammatory effects of absorbable gelatin sponge in the middle ear. METHODS: For in vitro evaluation, GF and GS were used as disks immersed in saline solution or 3% BA and placed in gel. Images were captured with a microscope and processed using image processing Toolbox. For in vivo tests, 16 female albino Sprague Dawley rats were divided into four groups: bulla opening; GF + 0.9% saline; GF + BA; and GS + 0.9% saline. An anterior approach to the right bulla was used for surgery. Preoperative and postoperative auditory brainstem response thresholds were measured. RESULTS: In vitro, there was marked degradation of GF by day 14, while GS showed complete degradation by the third day. In vivo, hearing recovery occurred by day 21. GF produced a more severe inflammatory response, which could be reduced by treating the GF with BA. ________________________________________________________________ Borax partially prevents neurologic disability and oxidative stress in experimental spinal cord ischemia/reperfusion injury. Koc ER, Gökce EC, Sönmez MA, Namuslu M, Gökce A, Bodur AS J Stroke Cerebrovasc Dis. 2015 Jan;24(1):83-90 OBJECTIVES: The aim of this study is to investigate the potential effects of borax on ischemia/reperfusion injury of the rat spinal cord. METHODS: Twenty-one Wistar albino rats were divided into 3 groups: sham (no ischemia/reperfusion), ischemia/reperfusion, and borax (ischemia/reperfusion + borax); each group was consist of 7 animals. Infrarenal aortic cross clamp was applied for 30 minutes to generate spinal cord ischemia. Animals were evaluated functionally with the Basso, Beattie, and Bresnahan scoring system and inclined-plane test. The spinal cord tissue samples were harvested to analyze tissue concentrations of nitric oxide, nitric oxide synthase activity, xanthine oxidase activity, total antioxidant capacity, and total oxidant status and to perform histopathological examination. RESULTS: At the 72nd hour after ischemia, the borax group had significantly higher Basso, Beattie, and Bresnahan and inclined-plane scores than those of ischemia/reperfusion group. Histopathological examination of spinal cord tissues in borax group showed that treatment with borax significantly reduced the degree of spinal cord edema, inflammation, and tissue injury disclosed by light microscopy. Xanthine oxidase activity and total oxidant status levels of the ischemia/reperfusion group were significantly higher than those of the sham and borax groups (P < .05), and total antioxidant capacity levels of borax group were significantly higher than those of the ischemia/reperfusion group (P < .05). There was not a significantly difference between the sham and borax groups in terms of total antioxidant capacity levels (P > .05). The nitric oxide levels and nitric oxide synthase activity of all groups were similar (P > .05). CONCLUSIONS: Borax treatment seems to protect the spinal cord against injury in a rat ischemia/reperfusion model and improve neurological outcome. ________________________________________________________________ Chromatin immunoprecipitation analysis of bortezomib-mediated inhibition of NFκB recruitment to IL-1β and TNFα gene promoters in human macrophages. Sanacora S, Chang TP, Vancurova I. Methods Mol Biol. 2014;1172:315-27 Interleukin-1β (IL-1) and tumor necrosis factor-α (TNF) are important pro-inflammatory cytokines involved in the mediation of the immune response, inflammation, tissue repair, and tumor progression. Regulation of IL-1 and TNF expression is mediated at the level of transcription by the transcription factor NFκB. Inhibition of NFκB activity by the proteasome inhibitor bortezomib (BZ) has been used as a frontline therapy in multiple myeloma and other hematological malignancies. In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the NFκB recruitment to endogenous IL-1 and TNF promoters in BZ-treated human macrophages. Corresponding to the BZ-suppressed mRNA levels of IL-1 and TNF, we show that BZ inhibits p65 NFκB recruitment to IL-1 and TNF promoters. This study specifically uses U937 macrophages, but the protocol could be easily modified to analyze the regulation of NFκB recruitment in other cell types. ________________________________________________________________ Effects of boric acid and 2-aminoethoxydiphenyl borate on necrotizing enterocolitis. Yazıcı S, Akşit H, Korkut O, Sunay B, Çelik T. J Pediatr Gastroenterol Nutr. 2014 Jan;58(1):61-7 OBJECTIVE: The aim was to study the effects of boric acid (BA) and 2-aminoethoxydiphenyl borate (2-APB) on oxidative stress and inflammation in an experimental necrotizing enterocolitis (NEC) rat model. METHODS: Experimental NEC was induced in 40 newborn Sprague-Dawley rats by asphyxia and hypothermia applied in 3 consecutive days. Rats were subdivided into 4 subgroups as NEC, NEC+BA, NEC+2-APB, and controls. BA and 2-APB were applied daily before the procedure. Serum total antioxidant status, superoxide dismutase (SOD), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and erythrocyte glutathione (GSH) levels were measured. Pathological changes for NEC in intestinal architecture were evaluated by a grading system. RESULTS: Pretreatment with BA and 2-APB resulted in a decrease in NEC incidence. In all of the NEC groups, decreased serum levels of GSH and SOD were measured. Boron limited GSH consumption but had no effect on SOD levels. Total antioxidant status levels were not statistically different among groups. In our experimental NEC model, BA, but not 2-APB, prevented the increase of TNF-α. Pretreatment with BA and 2-APB downregulated the activity levels of IL-6 in NEC. CONCLUSIONS: In the experimental NEC model, BA and 2-APB partly prevent NEC formation, modulate the oxidative stress parameters, bring a significant decrease in GSH consumption, and enhance the antioxidant defense mechanism, but have no effect on total antioxidant status. BA inhibits the hypoxia and hypothermia-induced increase in both IL-6 and TNF-a, but 2-APB only in IL-6. Boron may be beneficial in preventing NEC. ________________________________________________________________ Calcium fructoborate helps control inflammation associated with diminished bone health. Scorei ID, Scorei RI. Biol Trace Elem Res. 2013 Dec;155(3):315-21 Inflammation has been identified as a possible contributory factor to disruption of the normal bone remodeling process, a process essential to healthy bone mineral density. Several large population-based clinical studies have specifically shown that levels of C-reactive protein, an immune recognition protein that is a sensitive marker of inflammation, are inversely and independently associated with total bone mineral density. The evidence suggests that control of C-reactive protein levels may contribute to bone health by protecting against inflammation's disruption of the equilibrium between bone resorption and bone deposition. Calcium fructoborate, a patented complex of calcium, fructose, and boron found naturally in fresh and dried fruits, vegetables and herbs, and wine, is a sugar-borate ester. A growing body of peer-reviewed, published clinical research indicates that the calcium fructoborate significantly reduces serum levels of the C-reactive protein in humans, suggesting that this unique plant-mineral complex may contribute to bone health by controlling the inflammation associated with loss of bone mineral density. ________________________________________________________________ Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition. Wilck N, Fechner M, Dreger H, Hewing B, Arias A, Meiners S, Baumann G, Stangl V, Stangl K, Ludwig A. Arterioscler Thromb Vasc Biol. 2012 Jun;32(6):1418-26 OBJECTIVE: Low and nontoxic proteasome inhibition has anti-inflammatory, antiproliferative, and antioxidative effects on vascular cells in vitro and in vivo. We hypothesized that low-dose inhibition of the proteasome could provide antiatherogenic protection. The present study investigated the effect of low-dose proteasome inhibition on early lesion formation in low-density lipoprotein receptor-deficient mice fed a Western-type diet. METHODS AND RESULTS: Male low-density lipoprotein receptor-deficient mice, 10 weeks old, were fed a Western-type diet for 6 weeks with intraperitoneal injections of bortezomib or solvent. Bortezomib was injected at a dose of 50 μg/kg body weight. Cholesterol plasma levels were not affected by bortezomib treatment. En face Oil Red O staining of aortae and aortic root cryosections demonstrated significant reduction of atherosclerotic lesion coverage in bortezomib-treated animals. Bortezomib significantly reduced vascular cellular adhesion molecule-1 expression and macrophage infiltration as shown by histological analysis. Bortezomib treatment resulted in a significant reduction of superoxide content, lipid peroxidation and protein oxidation products, serum levels of monocyte chemoattractant protein-1, and interleukin-6. Gene expression microarray analysis showed that expressional changes induced by Western-type diet were attenuated by treatment with low-dose bortezomib. CONCLUSIONS: Low-dose proteasome inhibition exerts antioxidative and anti-inflammatory effects and attenuates development of atherosclerotic lesions in low-density lipoprotein receptor-deficient mice. ________________________________________________________________ Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. Naghii MR, Mofid M, Asgari AR, Hedayati M, Daneshpour MS. J Trace Elem Med Biol. 2011 Jan;25(1):54-8 Boron possesses widespread properties in biochemistry and nutrition. Acute supplementation with 11.6 mg of boron resulted in a significant increase in plasma boron concentration. Given such a fast bioavailability, the objective was to determine whether acute (hourly or daily), and weekly supplementation could have any significant biological effects on the steroid hormones and further on some inflammatory biomarkers. Eight healthy male volunteers attended the laboratory on three occasions (days 0, 1 and 7). On the first day (day 0), a blood sample collection at 8.00 A.M was followed by ingestion of placebo with the breakfast. On the next day (supplementation-day 1), similar procedure was followed by ingestion of a capsule containing 10mg of boron. On both occasions blood was collected every 2h for the next 6h. Subjects were requested to consume a capsule of 10mg boron every day with their breakfast, and on the day 7, the blood collection was carried out at 8.00 A.M, again. Boron in plasma increased significantly following hours and weekly consumption. Six hours supplementation showed a significant decrease on sex hormone binding globulin (SHBG), high sensitive CRP (hsCRP) and TNF-α level. After one week (in samples taken at 8.00 A.M, only), the mean plasma free testosterone increased and the mean plasma estradiol decreased significantly. Dihydrotestosterone, cortisol and vitamin D was elevated. Also, concentrations of all three inflammatory biomarkers decreased after supplementation. Of note, despite decreased proinflammatory cytokines, based on recent clinical data, this must be the first human study report to show an increase level of free testosterone after boron consumption. ________________________________________________________________ Inhibition of NF-κB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. Liang Y, Seymour RE, Sundberg JP. J Invest Dermatol. 2011 Jan;131(1):141-9 The NF-κB pathway performs pivotal roles in diverse physiological processes such as immunity, inflammation, proliferation, and apoptosis. NF-κB is kept inactive in the cytoplasm through association with inhibitors (IκB), and translocates to the nucleus to activate its target genes after the IκBs are phosphorylated and degraded. Here, we demonstrate that loss of function of SHANK-associated RH domain interacting protein (SHARPIN) leads to activation of NF-κB signaling in skin, resulting in the development of an idiopathic hypereosinophilic syndrome (IHES) with eosinophilic dermatitis in C57BL/KaLawRij-Sharpin(cpdm)/RijSunJ mice, and clonal expansion of B-1 B cells and CD3(+)CD4(-)CD8(-) T cells. Transcription profiling in skin revealed constitutive activation of classical NF-κB pathways, predominantly by overexpressed members of IL1 family. Compound-null mutants for both the IL1 receptor accessory protein (Il1rap(tm1Roml)) and SHARPIN (Sharpin(cpdm)) resulted in mice having decreased skin disease severity. Inhibition of IκBA degradation by the proteasome inhibitor bortezomib alleviated the dermatitis in Sharpin(cpdm) mice. These results indicate that absence of SHARPIN causes IHES with eosinophilic dermatitis by NF-κB activation, and bortezomib may be an effective treatment for skin problems of IHES. ________________________________________________________________ Discovery and optimization of boronic acid based inhibitors of autotaxin. Albers HM, van Meeteren LA, Egan DA, van Tilburg EW, Moolenaar WH, Ovaa H. J Med Chem. 2010 Jul 8;53(13):4958-67 Autotaxin (ATX) is an extracellular enzyme that hydrolyzes lysophosphatidylcholine (LPC) to produce the lipid mediator lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in diverse physiological and pathological processes, including vascular development, inflammation, fibrotic disease, and tumor progression. Therefore, targeting ATX with small molecule inhibitors is an attractive therapeutic strategy. We recently reported that 2,4-thiazolidinediones inhibit ATX activity in the micromolar range. Interestingly, inhibitory potency was dramatically increased by introduction of a boronic acid moiety, designed to target the active site threonine in ATX. Here we report on the discovery and further optimization of boronic acid based ATX inhibitors. The most potent of these compounds inhibits ATX-mediated LPC hydrolysis in the nanomolar range (IC(50) = 6 nM). The finding that ATX can be targeted by boronic acids may aid the development of ATX inhibitors for therapeutic use. ________________________________________________________________ Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Albers HM, Dong A, van Meeteren LA, Egan DA, Sunkara M, van Tilburg EW, Schuurman K, van Tellingen O, Morris AJ, Smyth SS, Moolenaar WH, Ovaa H. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7257-62 Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC(50) approximately 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX. ________________________________________________________________ Potent anti-inflammatory effects of low-dose proteasome inhibition in the vascular system. Ludwig A, Fechner M, Wilck N, Meiners S, Grimbo N, Baumann G, Stangl V, Stangl K J Mol Med (Berl). 2009 Aug;87(8):793-802 Comment in J Mol Med (Berl). 2009 Aug;87(8):749-51. Proteasome inhibitors are considered to have anti-inflammatory therapeutic potential. However, recent reports addressing proteasome inhibition in the vascular system are controversial, ranging from beneficial anti-inflammatory and anti-oxidative effects to potentiation of inflammation and oxidative stress. This study was based on the hypothesis that the divergent effects might be a result of a differential and dose-dependent responsiveness of vascular cells to proteasome inhibitors. We tested whether low doses of proteasome inhibitors would favor anti-inflammatory effects in vascular cells in vitro and in vivo. Human umbilical vein endothelial cells (HUVEC) were preincubated with proteasome inhibitors MG132 and MG262 at concentrations that did not affect cell viability during a 24-h treatment. Upon addition of tumor necrosis factor alpha (TNF-alpha) the induced expression of adhesion molecules and the adhesion of monocytic THP-1 cells to HUVECs was significantly lowered. However, nuclear translocation of NF-kappaB was only slightly diminished. Low-dose pretreatment with proteasome inhibitors decreased TNF-alpha-induced generation of reactive oxygen species in HUVEC. Bortezomib was administered at a dose of 50 microg/kg body weight to Dahl salt-sensitive rats (DSSR) on high-salt diet. This low-dose proteasome inhibition led to decreased hypertension-induced oxidative stress and reduced expression of vascular cell adhesion molecule 1 (VCAM-1) in the aortae. ________________________________________________________________ Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. Supinski GS, Vanags J, Callahan LA. Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L994-L1001 Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) can prevent sepsis-induced diaphragm weakness. Rats were given either 1) saline (0.5 ml ip), 2) endotoxin (12 mg/kg ip), 3) endotoxin plus MG132 (2.5 mg/kg), 4) endotoxin plus epoxomicin (1 micromol/kg), or 5) endotoxin plus bortezomib (0.05 mg/kg). Animals were killed either 48 or 96 h after injections, and assessments were made of diaphragm proteolysis, force-frequency relationships, mass, protein content, and caspase activation. Endotoxin increased proteolysis (P <0.001). MG132, epoxomicin, and bortezomib each prevented the endotoxin-induced increase in proteolysis (P <0.01). Endotoxin induced severe reductions in diaphragm force generation by 48 h (P <0.01); none of the proteasomal inhibitors prevented loss of force. Endotoxin induced significant reductions in diaphragm mass and protein content by 96 h (P <0.01); neither MG132 nor epoxomicin prevented loss of mass or protein, but bortezomib attenuated the reduction in protein content (P <0.05). Endotoxin increased diaphragm caspase-3 activity (P <0.01); caspase-3 activity remained high when either MG132, epoxomicin, or bortezomib were given. These data suggest proteasomal inhibitors are not an adequate treatment to prevent endotoxin-induced diaphragmatic dysfunction. ________________________________________________________________ Inhibition of experimental periodontitis by a topical boron-based antimicrobial. Luan Q, Desta T, Chehab L, Sanders VJ, Plattner J, Graves DT. J Dent Res. 2008 Feb;87(2):148-52 AN0128 is a boron-containing compound with antibacterial and anti-inflammatory properties. To test its potential effectiveness in treating periodontal disease, we induced experimental periodontitis in the rat by placing ligatures and assessed the impact of AN0128 and positive and negative controls by micro-CT and histologic measurements. The formation of an inflammatory infiltrate was measured in hematoxylin-and-eosin-stained sections. Daily application of AN0128 (1%) compared with controls reduced bone loss by 38 to 44% (P < 0.05), while vehicle alone had no effect (P > 0.05). The reduction in bone loss with AN0128 was similar to that achieved with a NSAID, ketorolac, and Total toothpaste containing triclosan. AN0128 also reduced the level of gingival inflammation 42% compared with the ligature only (P < 0.05), whereas vehicle alone had no effect (P > 0.05). The results indicate that AN0128 significantly reduces the formation of an inflammatory infiltrate and reduces bone loss, measured histologically and by micro-CT. ________________________________________________________________ Targeting NF-kappaB: a promising molecular therapy in inflammatory arthritis. Roman-Blas JA, Jimenez SA. Int Rev Immunol. 2008;27(5):351-74 The nuclear factor-kappa B family of transcription factors is intimately involved in the regulation of the inflammatory responses that play a fundamental role in the damage of articular tissues. Thus, many studies have examined the important contributions of components of the NF-kappaB signaling pathways to the pathogenesis of various rheumatic diseases and their pharmacologic modulation. Currently available therapeutic agents including nonsteroidal anti-inflammatory drugs, corticosteroids, nutraceuticals, and disease-modifying antirheumatic drugs, as well as novel specific small-molecule inhibitors have been employed. In addition, promising nucleic acid-based strategies have shown encouraging results. However, further research will be needed before NF-kappaB-aimed strategies become an effective therapy for inflammatory arthritis. ________________________________________________________________ Boric acid inhibits LPS-induced TNF-alpha formation through a thiol-dependent mechanism in THP-1 cells. Cao J, Jiang L, Zhang X, Yao X, Geng C, Xue X, Zhong L. J Trace Elem Med Biol. 2008;22(3):189-95 Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism. ________________________________________________________________ Proteasome inhibitor attenuates skeletal muscle reperfusion injury by blocking the pathway of nuclear factor-kappaB activation. Park JW, Qi WN, Cai Y, Urbaniak JR, Chen LE. Plast Reconstr Surg. 2007 Dec;120(7):1808-1818 BACKGROUND: Nuclear factor-kappaB is a key transcriptional factor in the regulation of inflammatory factors that are involved in tissue reperfusion injury, but conflicting data have been presented in the literature. The proteasome regulates proteins that control cell-cycle progression and apoptosis, and inhibition of the proteasome has been shown to reduce nuclear factor-kappaB activation and reperfusion injury. Although bortezomib is a potent proteasome inhibitor, its role in skeletal muscle reperfusion injury has not been documented, and its effects on the regulation of inflammatory factors in reperfused tissue are unclear. In this study, the authors investigated the role of nuclear factor-kappaB in skeletal muscle reperfusion injury and the effect of bortezomib (a proteasome inhibitor) on reperfusion injury. METHODS: Pedicled cremaster muscle flaps from bortezomib-treated and phosphate-buffered saline-treated control mice were subjected to 4.5 hours of ischemia and 90 minutes of reperfusion. RESULTS: During reperfusion, arterial diameters and blood flow recovered earlier and more completely in bortezomib-treated muscle than in controls. Compared with controls, Western blot analysis demonstrated a significant reduction in degradation of nuclear factor-kappaB inhibitory protein and expression of inducible nitric oxide synthase protein in bortezomib-treated muscle at the end of reperfusion. Immunohistochemistry showed decreased nuclear factor-kappaB p65-binding activity and down-regulated protein expression of intercellular adhesion molecule-1 and nitrotyrosine, accompanied by less muscle edema and inflammation as proven by histologic examination. CONCLUSIONS: Bortezomib effectively blocks nuclear factor-kappaB activation in attenuating muscle reperfusion injury through inhibiting nuclear factor-kappaB inhibitory protein degradation. Therefore, inhibition of proteasome activity may provide a novel therapeutic strategy for the treatment of skeletal muscle reperfusion injury. ________________________________________________________________ Differential involvement of NF-kappaB and MAP kinase pathways in the generation of inflammatory cytokines by human neutrophils. Cloutier A, Ear T, Blais-Charron E, Dubois CM, McDonald PP. J Leukoc Biol. 2007 Feb;81(2):567-77 The ability of human neutrophils to express a variety of genes encoding inflammatory mediators is well documented, and mounting evidence suggests that neutrophil-derived cytokines and chemokines contribute to the recruitment of discrete leukocyte populations at inflammatory sites. Despite this, our understanding of the signaling intermediates governing the generation of inflammatory cytokines by neutrophils remains fragmentary. Here, we report that inhibitors of the p38 MAPK and MEK pathways substantially diminish the release of (and in the case of p38 inhibitors, the gene expression of) several inflammatory cytokines in neutrophils stimulated with LPS or TNF. In addition, various NF-kappaB inhibitors were found to profoundly impede the inducible gene expression and release of inflammatory cytokines in these cells. The MAPK inhibitors did not affect NF-kappaB activation; instead, the transcriptional effects of the p38 MAPK inhibitor appear to involve transcriptional factor IID. Conversely, the NF-kappaB inhibitors failed to affect the activation of MAPKs. Finally, the MAPK inhibitors were found to prevent the activation a key component of the translational machinery, S6 ribosomal protein, in keeping with their post-transcriptional impact on cytokine generation. To our knowledge, this constitutes the first demonstration that in neutrophils, the inducible expression of proinflammatory cytokines by physiological stimuli largely reflects the ability of the latter to activate NF-kappaB and selected MAPK pathways. Our data also raise the possibility that NF-kappaB or MAPK inhibitors could be useful in the treatment of inflammatory disorders in which neutrophils predominate. ________________________________________________________________ NF-kappaB and not the MAPK signaling pathway regulates GADD45beta expression during acute inflammation. Zhang N, Ahsan MH, Zhu L, Sambucetti LC, Purchio AF, West DB. J Biol Chem. 2005 Jun 3;280(22):21400-8 The GADD45 (growth arrest and DNA damage-inducible) family of genes is involved in the regulation of cell cycle progression and apoptosis. To study signaling pathways affecting GADD45beta expression and to examine systematically in vivo the GADD45beta expression in tissues following various toxic stresses, we created a transgenic mouse by fusing the GADD45beta promoter to firefly luciferase (Gadd45beta-luc). In vivo GADD45beta expression was assessed by measuring the luciferase activity in the Gadd45beta-luc transgenic mouse using a non-invasive imaging system (IVIS Imaging System, Xenogen Corporation). We found that a number of agents that induce oxidative stress, such as sodium arsenite, CCl4, lipopolysaccharide (LPS), or tumor necrosis factor-alpha, are able to induce luciferase expression throughout the entire animal. In liver, spleen, lung, intestine, kidney, and heart, we observed an induction of luciferase activity after LPS treatment, which correlates with an increase of GADD45beta mRNA in these tissues. Processes that induce DNA damage activate the NF-kappaB signaling pathway. Several inhibitors of the NF-kappaB signaling pathway, including dexamethasone, thalidomide, and a proteasome inhibitor, bortezomib, showed inhibitory effects on LPS-induced GADD45beta expression as indicated by a decrease of the luciferase activity. Northern blot analysis confirmed a broad inhibitory effect of bortezomib on LPS-induced GADD45beta mRNA expression in spleen, lung, and intestine. In liver of bortezomib-treated mice, we observed a reverse correlation between the luciferase activity and the GADD45beta mRNA level. We speculate that such a discrepancy could be due to severe liver toxicity caused by bortezomib and LPS co-treatment. MAPK inhibitors had transient and inconsistent effects on LPS-induced luciferase expression. Our data are consistent with the notion that NF-kappaB, but not the MAPK signaling pathways, is involved in the in vivo regulation of GADD45beta expression. Thus, NF-kappaB signaling involves induction of GADD45beta expression, which supports the proposed role of GADD45beta in protecting cells against DNA damaged under various stress conditions. ________________________________________________________________ Small-molecule inhibitors of proteasome activity. Gaczynska M, Osmulski PA. Methods Mol Biol. 2005;301:3-22 The fast-track approval of a proteasome inhibitor, PS-341, to treat multiple myeloma spurred a wave of interest in both the proteasome itself and small-molecule compounds blocking its activities. Besides being candidates for drugs against cancer, autoimmune diseases, inflammation, or stroke, specific proteasome inhibitors are indispensable tools for biochemical and cell biology investigations of the proteasome and proteasome-ubiquitin system. Numerous synthetic peptide derivatives, such as boronates, epoxides, aldehydes, vinyl sulfones, cyclic peptides, and lactones, block the N-terminal threonine-type active centers of the enzyme, halting the cleavage of proteasomal protein substrates both in vitro and in vivo. Because some of the proteasomal inhibitors exhibit a high specificity toward only one particular type of an active center of the proteasome, they constitute valuable probes for testing the mechanism of proteolysis catalyzed by the enzyme. In this chapter we discuss the most common applications of available proteasome inhibitors. In addition to the best-known competitive inhibitors, we also describe the benefits from the use of allosteric inhibitors, which induce distinct but less understood in vitro and in vivo effects on the proteasomal machinery. Finally, we present the application of the basic biochemical procedures to decipher the mechanism of interactions of a novel compound with the proteasome. ________________________________________________________________ Effect of boron supplementation of pig diets on the production of tumor necrosis factor-alpha and interferon-gamma. Armstrong TA, Spears JW. J Anim Sci. 2003 Oct;81(10):2552-61 Two experiments were conducted to determine the effects of dietary B on the production of cytokines following an endotoxin challenge. In both experiments, pigs were obtained from litters generated from sows fed low-B (control) or B-supplemented (5 mg/ kg, as-fed basis) diets. In Exp. 1 and 2, 28 and 35 pigs, respectively (21 d old), remained with their littermates throughout a 49-d nursery phase and were fed either a control or B-supplemented diet. In Exp. 1, 12 pigs per treatment were moved to individual pens at the completion of the nursery phase and fed their respective experimental diet. On d 99 of the study, pigs were injected with 150 microg of phytohemagglutinin (PHA) to evaluate a local inflammatory response. Pigs receiving the B-supplemented diet had a decreased (P < 0.01) inflammatory response following PHA injection. Peripheral blood monocytes were isolated from six pigs per treatment on d 103 and cultured in the presence of lipopolysaccharide (LPS) to determine the effect of dietary B on tumor necrosis factor-alpha (TNF-alpha) production from monocytes. Isolated monocytes from pigs that received the B-supplemented diet had a numerically greater (P = 0.23) production of TNF-alpha. In Exp. 2, pigs were group housed with their littermates following the nursery phase for 43 d, after which 10 pigs per treatment were moved to individual pens. In Exp. 1 and 2, pigs were assigned randomly within dietary treatment to receive either an i.m. injection of saline or LPS on d 117 and d 109, respectively. The dose of LPS in Exp. 1 and 2 was 100 and 25 microg of LPS/kg of BW, respectively. In Exp. 1, serum TNF-alpha was increased (P < 0.01) at 2 h and tended to be increased (P < 0.11) at 6 and 24 h after injection by dietary B; however, only numerical trends existed for a B-induced increase in TNF-alpha in Exp. 2. Serum interferon-gamma (IFN-gamma) was increased (P < 0.01) at 6 h and tended to be increased (P < 0.08) at 24 h after injection in Exp. 1. In Exp. 2, dietary B also numerically increased IFN-alpha. These data indicate that dietary B supplementation increased the production of cytokines following a stress, which indicates a role of B in the immune system; however, these data do not explain the reduction in localized inflammation following an antigen challenge in pigs. ________________________________________________________________ Arginase and autoimmune inflammation in the central nervous system. Xu L, Hilliard B, Carmody RJ, Tsabary G, Shin H, Christianson DW, Chen YH. Immunology. 2003 Sep;110(1):141-8 Using a high throughput gene microarray technology that detects approximately 22 000 genes, we found that arginase I was the most significantly up-regulated gene in the murine spinal cord during experimental autoimmune encephalomyelitis (EAE). By Northern blot and arginase enzyme assay, we detected high levels of arginase I mRNA and protein, respectively, in the spinal cord of EAE mice, but not in the spinal cord of normal mice or mice that had recovered from EAE. In vitro, both microglia and astrocytes produced arginase and nitric oxide synthase, two enzymes that are involved in arginine metabolism. To explore the roles of arginase in EAE, we injected the arginase inhibitor amino-6-boronohexanoic acid (ABH) into mice during the inductive and effector phases of the disease. Compared with mice that received vehicle control, mice treated with ABH developed milder EAE with delayed onset, reduced disease score and expedited recovery. Spleen mononuclear cells from ABH-treated mice produced more nitric oxide and secreted less interferon-gamma and tumour necrosis factor-alpha as compared to control mice. These results indicate that arginase plays important roles in autoimmune inflammation in the central nervous system. ________________________________________________________________ Proteasome inhibition: a new anti-inflammatory strategy. Elliott PJ, Zollner TM, Boehncke WH. J Mol Med (Berl). 2003 Apr;81(4):235-45 The ubiquitin-proteasome pathway has a central role in the selective degradation of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. Consequently proteasome inhibition is a potential treatment option for cancer and inflammatory conditions. Thus far, proof of principle has been obtained from studies in numerous animal models for a variety of human diseases including cancer, reperfusion injury, and inflammatory conditions such as rheumatoid arthritis, asthma, multiple sclerosis, and psoriasis. Two proteasome inhibitors, each representing a unique chemical class, are currently under clinical evaluation. Velcade (PS-341) is currently being evaluated in multiple phase II clinical trials for several solid tumor indications and has just entered a phase III trial for multiple myeloma. PS-519, representing another class of inhibitors, focuses on the inflammatory events following ischemia and reperfusion injury. Since proteasome inhibitors exhibit anti-inflammatory and antiproliferative effects, diseases characterized by both of these processes simultaneously, as is the case in rheumatoid arthritis or psoriasis, might also represent clinical opportunities for such drugs. ________________________________________________________________ The proteasome: a new target for novel drug therapies. Elliott PJ, Ross JS. Am J Clin Pathol. 2001 Nov;116(5):637-46 The proteasome is an enzyme present in all cells, from yeast to human, and has a central role in the proteolytic degradation of the vast majority of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in controlling inflammatory processes, cell cycle regulation, and gene expression. As such, agents that inhibit the proteasome have been shown to be active in numerous animal models of inflammation and cancer Two proteasome inhibitors are under clinical evaluation. PS-519 is being studied for the treatment of reperfusion injury that occurs following cerebral ischemia and myocardial infarction. The other, PS-341, has recently entered multiple phase 2 clinical trials for the treatment of multiple myeloma, chronic lymphocytic leukemia, and a variety of solid tumors. The proteasome may have an important role in the evolution of HIV-related disorders including AIDS and inflammatory disorders. Therapeutic strategies using proteasome inhibitors for the treatment of these conditions have now entered preclinical development. ________________________________________________________________ The anti-inflammatory activity of boron derivatives in rodents. Hall IH, Burnham BS, Chen SY, Sood A, Spielvogel BF, Morse KW. Met Based Drugs. 1995;2(1):1-12 Acyclic amine-carboxyboranes were effective anti-inflammatory agents in mice at 8 mg/kg x 2. These amine-carboxyboranes were more effective than the standard indomethacin at 8 mg/kg x 2, pentoxifylline at 50 mg/kg x 2, and phenylbutazone at 50 mg/kg x 2. The heterocyclic amine derivatives as well as amine-carbamoylboranes, carboalkoxyboranes, and cyanoboranes were generally less active. However, selected aminomethyl-phosphonate-N-cyanoboranes demonstrated greater than 60% reduction of induced inflammation. The boron compounds were also active in the rat induced edema, chronic arthritis, and pleurisy screens, demonstrating activity similar to the standard indomethacin. The compounds were effecive in reducing local pain and decreased the tail flick reflex to pain. The derivatives which demonstrated good anti-inflammatory activity were effective inhibitors of hydrolytic lysosomal, and proteolytic enzyme activities with IC(50) 50 values equal to (-6)M in mouse macrophages, human leukocytes, and Be Sal osteofibrolytic cells. In these same cell lines, the agents blocked prostaglandin cyclooxygenase activity with IC(50) values of (-6)M. In mouse macrophage and human leukocytes, 5' lipoxygenase activity was also inhibited by the boron derivatives with IC(50) values of 10(-6)M. These IC(50) values for inhibition of these enzyme activities are consistent with published values of known anti-inflammatory agents which target these enzymes. ________________________________________________________________ Anti-inflammatory and anti-osteoporotic activities of base-boronated nucleosides and phosphate-boronated nucleotides in rodents. Rajendran KG, Burnham BS, Chen SY, Sood A, Spielvogel BF, Shaw BR, Hall IH. J Pharm Sci. 1994 Oct;83(10):1391-5 The 2'-deoxyribonucleoside cyanoboranes were effective anti-inflammatory agents in rodents at 2-8 mg/kg; they blocked induced edema, septic shock, and pleurisy. Overall compounds 3',5'-O-(bis- (triisopropylsilyl)-2'-deoxyinosine (1), 3',5'-O-bis(triisopropylsilyl)-2'-deoxycytidine (10), N3-(cyanoboryl)-2'-deoxycytidine (11), N7-(cyanoboryl)-N2-isobutyryl- 3',5'-O-bis(triisopropylsilyl)-2'-deoxyguanosine (20), and N7-(cyanoboryl)-N2- isobutyryl-5'-O-(4,4'-dimethoxytrityl)-3'-O-(triisopropylsilyl)-2' -deoxyguanosine (22) were the most active when all the anti-inflammatory screens are considered. The agents also blocked both local and central pain caused by inflammation. These nucleosides blocked calcium resorption but were less effective compared to other amine carboxyboranes. The inflammation process appeared blocked by these compounds because of their effectiveness in reducing both hydrolytic lysosomal enzyme and proteolytic enzyme activities. The agents were also dual inhibitors of prostaglandin cyclooxygenase and 5'-lipoxygenase activities in leukocytes and macrophages. These agents at 10(-4) M demonstrated no specific organ toxicity to ileum mucosa cells grown in tissue culture. ________________________________________________________________ Peptide boronic acids, substrate analogs, inhibit chymase, and histamine release from rat mast cells. Kato Y, Kido H, Fukusen N, Katunuma N J Biochem. 1988 May;103(5):820-2 Peptide boronic acids, such as methoxysuccinyl-Ala-Ala-Pro-(L)boro-Phe-OH, its pinacol ester, and t-butyloxycarbonyl-Phe-Pro-(L)boro-Phe-pinacol, inhibited the activity of chymase from connective tissue mast cells approximately 40- to 80-fold more than atypical chymase from mucosal mast cells, and did not inhibit trypsin. Only peptide boronic acids containing "L" forms of boronic acids were inhibitory. The Ki values of these peptide boronic acids for chymase were in the 60-170 nM concentration range, like those of the natural inhibitors tested, but all the natural inhibitors tested except Eglin C and chymostatin inhibited both chymase and trypsin. Thus these peptide boronic acids should be useful for selective inhibition of chymase with less inhibitory activity for atypical chymase and without inhibition of trypsin. These peptide boronic acids markedly inhibited histamine release induced by anti-rat immunoglobulin E, suggesting that chymase in connective tissue mast cells plays some role in the process of histamine release. These peptides are assumed to be therapeutically useful for treatment of allergic inflammations catalyzed by chymase. ________________________________________________________________